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Abstract

Explicit expressions are derived for derivatives at zero lay of the mean

square prediction error of a class of random processes which includes the

rational case. A simple random process is demonstrated which is not in the

class. A sufficient condition is given to determine whether a random process

is in the class.

by1

*This work was done while the author was visiting the Center for Stochastic

Processes, Department of Statistics, University of North Carolina, Chapel

Hill, NC supported under Air Force Office of Scientific Research Contract No.

AFOSR F4962U- 82-C- 0009.

NOTCE 11 * ' tTO TIC
Thi.3*~~~< -s beonri- to1~ h

Chief. T.AvhnicaAl Infordatio/DivirloU

ElcrclEgnein'eatet Ds



-' -. "..... ,

9

* Introduction

Finding the minimum variance linear predictor of a continuous time wide

sense stationary random process is a.classical problem in the electrical

engineering and mathematics literature. Wiener lJ solved the problem of

prediction given that the infinite past of the process is observed. Krein [2)

solved the problem in principle for the much harder case of observing only a

finite portion of the entire past. The problem is that the prediction formula

" is still extremely difficult to calculate in a practical sense. Rozanov L3]

gives formulae for the rational power spectrum case but these still require

solving complex differential equations to obtain certain constants. Given

that the predictors may be difficult to calculate one may desire to have

recourse to suboptimal ad-hoc schemes. If so, it is of crucial importance to

be able to calculate the mean squared error performance of such a suboptimal

predictor and compare it to the performance of the optimal one.

More recently Cuzick [4] gives a nice overview of the problem and derives

an upper bound to the prediction error which approaches zero at the correct

rate as the "lag" or time interval into the future approaches zero. These

bounds however have a unknown constant appearing in them which hampers (as the

author states) the practical utility of the results.

In this note we will give approximate expressions for the mean squared

prediction error for small extrapolations into the future for a class of -.

random processes which includes the rational case. Much of our intuition is

based upon how filtering and prediction works for the rational case. As an

interesting sidelight it is demonstrated that the predictors (and their error)

can depart very widely from those that would be expected based upon a rational

approximation.
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Notation

(1) {x(t)- -< -T < t < U) is an observation of a wide sense stationary

nondeterministic zero mean random process. 
'-

(k)
(2) x (t) is the kth mean square derivative of x(t) (if it exists).

(3) XT(T) be the minimum mean squared error predictor of x(T), T > U.

(4) E{(x(T) - XT(T) msef(T).

(5) F'(A) is the power spectrum of the random process x(t). F'IF'(A)I=R(t)

the autocorrelation function the random process where F I and F'{ }

denote the Fourier and Inverse Fourier Transform operators respectively.

(6) R(t) = f(t) * f(-t) where f(t) is a causal square integrable function

which is guaranteed to exist by the Paley-Wiener Theorem [5].

Development

Suppose F'(x) is rational and F'(X) * U, then F{f(t)} is also rational.

2 "

F'( ) = 8 
, .':-:

BlX)J I  

-

IJjU 
--: -:

where A' and B are real, and 0 > a+1.J 3

J10 Atlix 
j  

"' '"

F~f(t)} -* -
._...__...-...

C!B(iX)J

Let k be such that 0 > a+k+l.

S*•. •...,,* -
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Then the Laplace Transform of the kth derivative of f(t) is given by,

k)

L{ f(k)(t), 0_j--0
S 'S

B3y the Abelian Theorem for Laplace Transforms, we have

f(k)( 0) )(t))s

=0 0> +k+1

A'
(2w~kB *+k+l

*However from [6, pg. 544] we have

=~)(+ 0 20 > 2u+k+2

1 C1L 20-2a
=+1 (2w1) 20 2a+k+1

* Hence

f(k)(0
2  21 (1))

(for 0-a-I > k)

A random process of the above type has exactly 0-a-i derivatives.

Therefore we can consider a suboptimal predictor X(T), Of X(T) sS

-3-
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k (k)(0

k-O

We define

2
ms(T E{(x(T) -X (T))

It is straightforward (but extremely tedious) to verify that

k.i (k) k+1
k + 2(k-1) (0,)(-1) k 2(0-a) -1

A well known formula (5,6] for the optimum prediction when T =-is given

by

mse.(t) =E((x(-t) -;.(,)) 
2
) f f 2(t)dt

U

Again it is straightforward but tedious to verify that ,

akmse (T) fk-i (~i
k '= =(k-1)(f (0+)) k 2(-t-

3T +

OT T-0+

(we emphasize again that the above is zero unless k 2(0-a)-i). Hence . ;

since m~e(T~) represents the error of a suboptimal estimator which depends only

upon the value of the random process and its derivatives at zero we must have *: .1*

-4-



K! k _ K! k > K! k
T T t

where k < 2(8-a) -1. Taking the limit as T 0 we have our theorem: S

Theorem 1

Suppose the random process x(t) has a rational power spectrum F'(x) such 9

that F'(A) 0 U.

k k01a mseT(T) k-1 Rk)_=(r 2, Rk_ ) (0+1(-I T  
.

1k 1= +  T k- -:.

k < 2(,-c,)--

where R(r) = F'(X)}.

Remark I

The above development proves the existence of the partial derivative and p

+gives its value at T = U. Note that for all values of K smaller than

2(0-a)-1 the value is zero.

Remark 2

By the nature of the proof we see that for small prediction "lags" the *- - -

simple Taylor series predictor performs just about as well as the more complex .

Wiener predictor for processes with rational power spectra.

One may now hope that a more general class of random processes will 0

behave in the same manner. Since the rationals are dense in the class of all

spectra we could hope that all random processes would behave like this. This

is not the case as shown by the following counterexample:

-5- * 'a"
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Counterexample

sin T
Suppose F'(X) = 2 and = N a positive integer. Then from £ ] we

have

meT(T) =2N+2 T N+I-T)T 0 T< 1T 8(2N+1) + 4(2N+1) 0<T< 1/2

amseT(r) 2N+2 N+ 1

S T=O = +) + (2N+1)4

N+1
(N+1)2

R". I-

Suppose we use x(T) = x(O) (the best Taylor Series predictor). Then

since

R() 1 1 for 0 < x < 1

0>

112
1 4_ __ _

=- - 1 :--.::

4'' 1/4

ax . +  2 2".."-
T-0S

Remark I - -

Obviously these two expressions are unequal with the optimal predictor

error derivative strictly less than 1/2 for all integer values of N and .

approaching 1/4 as N approaches -.

. . • . . ,

-6- .! _
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Remark 2

In contrast to the rational case the partial of the error depends upon

the length of the observation T we are given.

However if we impose some technical conditions we can demonstrate an

entire class of power spectra that will act as in the rational case.

Theorem 2

Suppose f(t) has the following representation

t
f(t) = f(O) + f f'(ca)d.

0

where V'(a) is square integrable i.e. f(t) is absolutely continuous and its

derivative is a square integrable function. Then R'(0) -

Proof

For T > 0 we have

R(T) f f f(O)f(a-T)da

T

= f f(a)Cf(a) - f f'(a-s)dsjd"
T 0

0
(by absolute continuity of f)

= I f2()da f f f f()f'(a-s)dctds
T T"

+ f f f(ct)f'(l-s)dads
0 0

-7-



(integration interchange justified by invoking Tonelli's Theorem

on Jf(a)f'(a-s)J to get integrability on cross measure then Fubini's Theorem

allows interchange). Now consider the last term divided by T i.e. .

T T

1 f f(*)f'(a-s)dctds
U0

f<I f 2 f(a)d) 1(f f' 2(s)d) 1 ds
T0 0 0

(by Schwartz inequality) e

T0 0

I T K(mse(T)) 11 mse 112 K -> 0

t .-. 0

Therefore we may now safely invoke the fundamental theorem of the calculus and

find (forT > 0)

R'(r) =-f
2(,t f f(a)f(c-tde + 0(T)

0

where we have terms that are approaching zero as T approaches zero by the

above agrument. Utilizing the fact that V is square integrable we may -

approximate it uniformly close by a continuous function which implies we can

take limit as T goes to zero through positive values to obtain

+ 2
R'(0 -f (0) - f f (a) f'(adQ

0

".- ° -.J -

f2  0
(0)

2 0-

-8-
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Note the next to last line follows since

T
f If(x)l If'(x)ldx = lim f jf(x)I If'(x)ldx
0 T+ 0

< If. If'R = M <

which implies the following limit exists

T
lim f f(x)f'(x)dx M' <
T+- U .2%..

because absolute summaoility implies sunuability. Therefore lim f(T)

exists and hence must equal zero.

Q.E.D.

Remark 1

The theorem statement corresponds to Eq. (1) with k=O. We could obtain a

statement for arbitrary k by making the same assumptions on f(k-)(t) that we

do for f(t). Although the proof is messier, it is essentially the same.

Remark 2

The counterexample fails the theorem requirements since

f (t) 0 < t < 1-'" fZt 2 -'~
"" :2

we would have to have f'(t) = - 6(t-1) and this candidate for the derivative

of course is not square integrable.

-9-:...........................



Remark 3

- One can now generate entire families of power spectra that behave as the

rational spectra do. For example take ,

f(t) 0 Ot <

=e-t1 t > I

=0 t 0

f'(t) = 0<t < 1p

=-e t> 1

-0 tO<

*and it is square integrable.

R (-r) = r -T U < < (1
x2_

BR X(t) 
f - (0____

-r T=o 2

Remark 4

If fcL and f eL a well known property of convolutions states that f*f'

-is not only continuous but uniformly continuous. Hence this implies the

* derivative of the autocorrelation function must exist at every point (see

proof of theorem 2) and be continuous (except possibly at the origin). Thisr

-condition would usual ly be easier to check on a particular autorcorrelation

function than if f, f c 1 Our counterexample with the triangular auto-

correlation of course fails this test.

-10-
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Conclusions

Basically this note reports on an interesting phenomenon dealing with the

prediction error for small lags. For the rational power spectrum case a

closed form expression is derived for the derivative with respect to the lag

of the mean square prediction error. It is shown that, although it appears a

large class of "nice" power spectra do behave like the rationals, there are

also simple ones that don't, in particular the triangular autocorrelation

function. For these "nice" random processes simple Taylor Series type

predictors perform optimally well for small lags into the future.

The problem of whether a particular power spectrum is "nice" or not

remains an open problem. A sufficient condition given in terms of smoothness

attributes on the functions in the Wiener spectral decomposition has been

given but its utility is limited due to the difficulty of performiny the

decomposition and verifying the conditions. We are able to remark thouyh that

if the autocorrelation function isn't everywhere differentiable (except

possibly at zero) then it will not be able to meet our smoothness conditions.

V-_

. . . . . . . - - - .. . . . . .o.. - - - .° -tt•

. . . . . . "~ " ~' '--- ~.m N~a~:m u .a'm ... ° .



Acknowledgements

The author would like to thank Stamatis Cambanis of the University of

North Carolina for several informative discussions. The author would

*especially like to thank Tom Kurtz of the University of Wisconsin for his

* insights and a discussion leading to theorem 2.



V7 -j-.77

References

[1] N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary

Time Series, Wiley, New York, 1949.

(2] M. Krein, "On a fundamental approximation problem in the theory of

extrapolation and filtering of stationary random processes, Dokl. Adad.

Nauk. SSSR 94 (1954), 13-16. (English translation in Selected Transl.

Math. Statist. Prob. 4 (1964), 127-131).

~3] Y. Rozanov, Stationary Random Processes, Holden-Oay, San Francisco,

1967.

(4J J. Cuzick, "A Lower Bound for the Prediction Error of Stationary

Gaussian Processes," Indiana University math. Journal, Vol. 26, No. 3

(1977).

[5] H. Dym and H. McKean, Gaussian Processes, Function Theory, and the

Inverse Spectral Problem, Academic Press, New York, 1976.

[6] J. Doob, Stochastic Processes, Wiley, New York, 1953.

'7] H. Royden, Real Analysis, Macmillan, Toronto, 1968.

-13-

. . . . .. . . .-.

. . . . . . . . . °

=-- - - --



FILMED

1-85

DTIC
No- l


